Optimal ensemble averaging of neural networks

نویسندگان

  • Ury Naftaly
  • Nathan Intrator
  • David Horn
چکیده

Based on an observation about the different effect of ensemble averaging on the bias and variance portions of the prediction error, we discuss training methodologies for ensembles of networks. We demonstrate the effect of variance reduction and present a method of extrapolation to the limit of an infinite ensemble. A significant reduction of variance is obtained by averaging just over initial conditions of the neural networks, without varying architectures or training sets. The minimum of the ensemble prediction error is reached later than that of a single network. In the vicinity of the minimum, the ensemble prediction error appears to be flatter than that of the single network, thus simplifying optimal stopping decision. The results are demonstrated on sunspots data, where the predictions are among the best obtained, and on the 1993 energy prediction competition data set B.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring of Regional Low-Flow Frequency Using Artificial Neural Networks

Ecosystem of arid and semiarid regions of the world, much of the country lies in the sensitive and fragile environment Canvases are that factors in the extinction and destruction are easily destroyed in this paper, artificial neural networks (ANNs) are introduced to obtain improved regional low-flow estimates at ungauged sites. A multilayer perceptron (MLP) network is used to identify the funct...

متن کامل

The Relative Performance of Ensemble Methods with Deep Convolutional Neural Networks for Image Classification

Artificial neural networks have been successfully applied to a variety of machine learning tasks, including image recognition, semantic segmentation, and machine translation. However, few studies fully investigated ensembles of artificial neural networks. In this work, we investigated multiple widely used ensemble methods, including unweighted averaging, majority voting, the Bayes Optimal Class...

متن کامل

Ensemble strategies to build neural network to facilitate decision making

There are three major strategies to form neural network ensembles. The simplest one is the Cross Validation strategy in which all members are trained with the same training data. Bagging and boosting strategies pro-duce perturbed sample from training data. This paper provides an ideal model based on two important factors: activation function and number of neurons in the hidden layer and based u...

متن کامل

The dropout learning algorithm

Dropout is a recently introduced algorithm for training neural network by randomly dropping units during training to prevent their co-adaptation. A mathematical analysis of some of the static and dynamic properties of dropout is provided using Bernoulli gating variables, general enough to accommodate dropout on units or connections, and with variable rates. The framework allows a complete analy...

متن کامل

The Application of Multi-Layer Artificial Neural Networks in Speckle Reduction (Methodology)

Optical Coherence Tomography (OCT) uses the spatial and temporal coherence properties of optical waves backscattered from a tissue sample to form an image. An inherent characteristic of coherent imaging is the presence of speckle noise. In this study we use a new ensemble framework which is a combination of several Multi-Layer Perceptron (MLP) neural networks to denoise OCT images. The noise is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997